
International Journal of Market Research Vol. 56 Issue 4

489© 2014 The Market Research Society

Received (in revised form): 23 January 2014

DOI: 10.2501/IJMR-2014-032

Optimising human inspection work in
automated verbatim coding

Giacomo Berardi, Andrea Esuli
Consiglio Nazionale delle Ricerche
Fabrizio Sebastiani1
Qatar Computing Research Institute2

Automatic verbatim coding technology is essential in many contexts in which,
either because of the sheer size of the dataset we need to code, or because of
demanding time constraints, or because of cost-effectiveness issues, manual coding
is not a viable option . However, in some of these contexts the accuracy standards
imposed by the customer may be too high for today’s automated verbatim coding
technology; this means that human coders may need to devote some time to
inspecting (and correcting where appropriate) the most problematic autocoded
verbatims, with the goal of increasing the accuracy of the coded set . We discuss
a software tool for optimising the human coders’ work, i .e . a tool that minimises
the amount of human inspection required to reduce the overall error down to a
desired level, or that (equivalently) maximises the reduction in the overall error
achieved for an available amount of human inspection work .

Introduction

In the past ten years we have championed an approach to automatically
coding open-ended answers (‘verbatims’) based on ‘machine learning’
(Giorgetti & Sebastiani 2003) . Based on these principles we have built an
automated verbatim coding system, which we have variously applied to
coding surveys in the social sciences (Giorgetti et al. 2003), in customer
relationship management (Macer et al. 2007) and in market research (Esuli
& Sebastiani 2010) .

1 The order in which the authors are listed is purely alphabetical; each author has made an equally important
contribution to this work .
2 Fabrizio Sebastiani is on leave from Consiglio Nazionale delle Ricerche .

Optimising human inspection work in automated verbatim coding

490

This system (see Figure 1) is based on a supervised learning metaphor: the
system learns, from sample manually coded verbatims (training examples),
the characteristics a new uncoded verbatim (a test example) should have
in order to be attributed a given code; the human operator who feeds the
training examples to the system plays the role of the ‘supervisor’ (Alpaydin
2010; Mohri et al. 2012) .

The machine learning approach to automated verbatim coding has
shown very good accuracy in many real-world studies (see Esuli and
Sebastiani (2010) for examples) . However, there may indeed be scenarios
in which the accuracy standards imposed by the customer (e .g . as specified
in a service level agreement) are too demanding, not only for this approach
but for any existing automated verbatim coding technology . If full manual
coding by expert coders is not a viable option (due to the sheer size of the
dataset that needs coding, or to demanding time constraints, or to cost
issues, or to a combination of all these), a possible strategy may consist in
coding the data by means of an automatic method, and then having one
or more human coders inspect (and correct where appropriate) the most
problematic among the automatically coded verbatims .2

In this paper we will be interested in application scenarios of the latter
kind . Specifically, the task we will set ourselves will be that of devising
software tools that support the post-coding inspection work by the human
coders . For us, supporting the coders’ work will mean maximising the
cost-effectiveness of their work; in other words, we will be interested in
software methods that minimise the amount of human inspection work
required to reduce the overall error in the data down to a certain level, or
that (equivalently) maximise the reduction in the overall error achieved for
a certain amount of human coder’s inspection work .

2 In the rest of this paper we will simply write ‘inspect’ to actually mean ‘inspect and correct where appropriate’ .

Figure 1 Architecture of a verbatim coding system based on supervised machine learning

uncoded
verbatims

Verbatim
classification

Classifier
training

Coded
verbatims

Codeframe
Autocoded
verbatims

International Journal of Market Research Vol. 56 Issue 4

491

A worked-out example

In order to see how human coders may be effectively supported in their
post-editing work, let us look at a specific example . Let us assume that the
coding task consists in deciding whether a given code applies or not to any
of a set of uncoded verbatims; coding according to an entire codeframe is
qualitatively analogous, since the process above can be repeated for each
code in the codeframe .

Let us also assume that a set of uncoded verbatims has been automatically
coded; for simplicity of illustration we here assume that this set consists
of 20 verbatims only . We can measure the accuracy obtained in this
automatic coding job by (1) choosing an accuracy measure, (2) filling
out a contingency table, and (3) evaluating the chosen measure on this
table . For illustration purposes we assume that our accuracy measure is
the well-known F1 measure (see Esuli and Sebastiani (2010) for a detailed
discussion), defined as

F
TP

TP FP FN1

2
2

= ⋅
⋅ + +()

 (2)

where by TP, FP, FN, TN, we indicate, as customary, the number of true
positives, false positives, false negatives, true negatives, derived from the
automatic coding; F1 values range from 0 (worst) to 1 (best) .

Figure 2 depicts a situation in which the automated coding process has
returned 4 true positives, 3 false positives, 4 false negatives, and 9 true
negatives, resulting in a value of F1 = 2·4/(2·4+3+4) = 0 .533 . The 20
verbatims are represented in the two rows at the bottom via tinted and
black cards; the upper row represents the coding decisions of the system
(‘predictions’), while the lower row represents the correct decisions that
an ideal system would have taken . A tinted card represents a ‘yes’ (the
verbatim has the code), while a black card represents a ‘no’ (the verbatim
does not have the code); a correct decision is thus represented by the upper
and lower card in the same column having the same colour .3

Let us imagine a scenario in which the customer insists that the data must
be coded with an accuracy level of at least F1 = 0 .800 . In this case, after
checking that the value of F1 that the automatic classifier has obtained is
0 .533, the human coder decides to inspect some of the verbatims until the

3 Note that this example is artificial and is for illustration purposes only . In the real-world coding studies reported
in Esuli and Sebastiani (2010), our automated verbatim coding system has always obtained higher F1 values,
ranging from 0 .55 to 0 .92 depending on the number of training examples available and on the inherent difficulty
of the coding task .

Optimising human inspection work in automated verbatim coding

492

desired level of accuracy has been obtained .4 Let us assume that the coder
examines the verbatims at the bottom of Figure 2 in left-to-right order .
The first verbatim that the coder examines is a true positive; no correction
needs to be done, the value of F1 is unmodified, and the coder moves on to
the second verbatim . This is a false negative, and correcting it decreases FN
by 1 and increases TP by 1, which means that F1 now becomes F1 = 2·5/
(2·5+3+3) = 0 .625 . The third is a false positive, and correcting it decreases
FP by 1 and increases TN by 1, which means that F1 now becomes F1 =
2·5/(2·5+2+3) = 0 .667 . The fourth is a false negative, which brings about
F1 = 2·6/(2·6+2+2) = 0 .750, and the fifth is a false positive, which yields
F1 = 2·6/(2·6+1+2) = 0 .800 . At this point, having reached the minimum
level of accuracy required by the customer, the human coder’s task is over .

Ranking the automatically coded verbatims

In the example illustrated in the previous section, bringing F1 from 0 .533
up to 0 .800 has required the inspection of five verbatims, i .e . 25% of the
entire set . Could the human coder have achieved the same improvement in
accuracy with a smaller effort (i .e . by inspecting fewer verbatims)? Could
she, by putting in the same effort, have reached a level of accuracy higher
than F1 = 0 .800? The answer to both questions is yes, and the key to doing
better is the order in which the verbatims are inspected .

4 Actually, the human coder does not know the level of accuracy that the automatic classifier has obtained, since
she does not know the true code assignments of the verbatims . However, this level of accuracy can be at least
estimated in real time, via a technique called ‘10-fold cross-validation’, which will be discussed below .

Figure 2 A worked-out example, representing a contingency table (upper-left part of the
figure) deriving from the automatically coded examples (lower part) and from which accuracy
is computed (formula in the upper-right part)

TP

1

TP

7

TP

13

TP

17

FN

2

FN

4

FN

11

FN

20

TN

6

TN

9

TN

10

TN

12

TN

14

TN

15

TN

18

TN

19

TN

16

FP

3

FP

8

FP

5

Predicted

True

F1 = 2 · TP/(2 · TP + FP + FN) = 0.533

Predicted

Y N

True
Y TP = 4 FP = 3

N FN = 4 TN = 9

International Journal of Market Research Vol. 56 Issue 4

493

For instance, the fact that the first inspected verbatim was a true positive
was suboptimal . Inspecting verbatims that have been coded correctly is,
for the human coder, wasted time, since no correction is performed and F1
remains thus unmodified . Of course, there is no way to know in advance
if the verbatim has been coded incorrectly or not . However, it would at
least be desirable to know how likely it is that the verbatim has been coded
incorrectly, i .e . to know its probability of misclassification; in this case, the
system might rank the automatically coded verbatims in such a way as to
top-rank the verbatims that have the highest such probability .

A second fact that jumps to the eye in the worked-out example of the
previous section is that the increase in accuracy (i .e . the gain) determined
by the correction of a false negative is higher (sometimes much higher) than
the gain determined by the correction of a false positive . For instance, in
correcting the second verbatim (a false negative) F1 jumped from 0 .533 to
0 .625 (a +17 .1% relative increase), while in correcting the third verbatim
(a false positive) F1 moved only from 0 .625 to 0 .667 (a mere +6 .6%
relative increase) . This is not an idiosyncrasy of the F1 measure, since for
many accuracy measures the gain deriving from the correction of a false
positive is different than the one deriving from the correction of a false
negative .5 So, the fact that two false positives were inspected and corrected
while two false negatives were left uninspected and uncorrected (in 11th
and 20th position, respectively) was also suboptimal . This means that the
system should, other things being equal, rank higher those verbatims (the
false negatives, in our case) that bring about a higher gain when corrected .
In the example of the previous section, had we ranked the four false
negatives at the top four rank positions and a false positive at the fifth,
the same amount of human coder inspection work would have brought
about an increase in F1 from 0 .533 to 0 .889 (instead of 0 .800); had we
instead been happy with reaching F1 = 0 .800, the human coder would have
reached it by inspecting and correcting only the four top-ranked verbatims
(actually, by doing this she would have reached F1 = 0 .842) .

In sum, we have learned two key facts .
The first is that the order in which the human coder inspects the

automatically coded verbatims is what determines the cost-effectiveness
of her work . This fact should come as no surprise: the task of ranking

5 Note that this asymmetry holds despite the fact that F1 pays equal attention to the ability of the system to avoid
false positives (known as precision, and defined as π = TP/(TP+FP) and to the ability of the system to avoid false
negatives (known as recall, and defined as ρ = TP/(TP+FN); in fact, F1 = (2·π·ρ)/(π+ρ) = (2· TP)/(2·TP+FP+FN) . In
other measures that, say, pay more attention to recall than to precision, the difference between the gain obtained
by correcting a false positive and the gain obtained by correcting a false negative is amplified .

Optimising human inspection work in automated verbatim coding

494

a set of digital objects in terms of perceived usefulness to a given task
is of paramount importance in today’s computer science as a whole, as
perfectly exemplified by current search engines .6 The task of ranking
the automatically coded verbatims with the goal of maximising the
cost-effectiveness of a human coder who scans (inspecting and correcting)
the ranked list down to a certain depth, has been called Semi-Automatic
Text Classification (SATC) (Berardi et al. 2012; Martinez-Alvarez et al.
2012), to reflect the fact that it attempts to optimise a pipeline in
which human and machine cooperate in achieving the goal of accurate
classification .

The second fact we have learned is that, if we want to order these
verbatims so as to maximise the cost-effectiveness of the human coder’s
work, we should take two main factors into account, i .e . (1) the probability
of misclassification of a given verbatim, and (2) the gain in coding accuracy
that the verbatim brings about once inspected and corrected .

Utility theory

What kind of mathematical theory should we use in order to devise such
a ranking function?

The need to account for probabilities and gains immediately evokes
utility theory, an extension of probability theory that incorporates the
notion of gain (or loss) that accrues from a given course of action (von
Neumann and Morgenstern 1944; Anand 1993) . Utility theory is a general
theory of rational action under uncertainty, and as such is used in many
fields of human activity . For instance, utility theory is of paramount
importance in betting, since in placing a certain bet we take into account
(1) the probabilities of occurrence that we subjectively attribute to a set
of outcomes (say, to the possible outcomes of the Arsenal FC vs Chelsea
FC game), and (2) the gains or losses that we obtain, having bet on one of
them, if the various outcomes materialise .

In order to explain our method let us introduce some basics of utility
theory . Given a set A = {α1, . . ., αm} of possible courses of action and a set
Ω = {ω1, . . ., ωn} of mutually disjoint events, the expected utility U(αj, Ω)
that derives from choosing course of action αj, given that any of the events
in Ω may occur, is defined as

6 The main factor that, in the late 1990s, decreed the success of Google over its then-competitors (e .g . AltaVista,
Inktomi) was exactly its superior ranking function . Nowadays it is fair to say that the ranking function that
Google uses is as secret as the recipe for Coca-Cola .

International Journal of Market Research Vol. 56 Issue 4

495

U P Gj i j i
i

(,) () (,)α ω α ω
ω

Ω
Ω

= ⋅
∈

∑ (2)

where P(ωi) is the probability of occurrence of event ωi, and G(αj,ωi) is
the gain obtained if, given that αj has been chosen, event ωi occurs . For
instance, αj may be the course of action ‘betting on Arsenal FC’s win’ and
Ω may be the set of mutually disjoint events Ω = {ω1, ω2, ω3}, where ω1 =
‘Arsenal FC wins’, ω2 = ‘Arsenal FC and Chelsea FC tie’, and ω3 = ‘Chelsea
FC wins’; in this case,

•	 P(ω1), P(ω2) and P(ω3) are the probabilities of occurrence that we
subjectively attribute to the three events ω1, ω2 and ω3

•	 G(αj, ω1), G(αj, ω2) and G(αj, ω3) are the economic rewards we obtain,
given that we have chosen course of action αj (i .e . given that we have
bet on the win of Arsenal FC), if the respective event occurs; of course,
our economic reward will be positive if ω1 occurs and negative if either
ω2 or ω3 occur .

When we face alternative courses of action, acting rationally means
choosing the course of action that maximises our expected utility . For
instance, given the alternative courses of action α1 = ‘betting on Arsenal
FC’s win’, α2 = ‘betting on Arsenal FC’s and Chelsea FC’s tie’, α3 = ‘betting
on Chelsea FC’s win’, we should pick among {α1,α2,α3} the course of
action that maximises U(αj, Ω) .

Ranking automatically coded verbatims via utility theory

How does this translate into a method for ranking automatically coded
verbatims? Assume we have a set D = {d1, . . ., dn} of automatically coded
verbatims that we want to rank, and assume that F1 is our evaluation
measure . For instantiating Equation 2 concretely we need:

1 . to decide what our set A = {α1, . . ., αm} of alternative courses of action
is

2 . to decide what the set Ω = {ω1, . . ., ωn} of mutually disjoint events is
3 . to specify how we compute their probabilities of occurrence P(ωi)
4 . to define the gains G(αj, ωi) .

Optimising human inspection work in automated verbatim coding

496

Let us discuss each of these steps in turn .7

Courses of action
Concerning Step 1, we will take the action of inspecting (and correcting,
if needed) verbatim dj as course of action αj . In this way we will evaluate
the expected utility U(dj,Ω) (i .e . the expected increase in overall accuracy)
that derives from inspecting each verbatim dj, and we will be able to rank
the verbatims by their U(dj,Ω) value, so as to top-rank the ones with the
highest expected utility .

Events
Concerning Step 2, we have argued that the increase in accuracy that
derives from inspecting (and correcting if needed) a verbatim depends on
whether the verbatim is a true positive, a false positive, a false negative
or a true negative; as a consequence, we will take Ω = {tp,fp,fn,tn} . For
instance, when evaluating U(dj,Ω), the expression P(tp) will mean ‘the
probability that dj is a true positive’ .8

Probabilities of occurrence

Concerning Step 3, we need to describe how to compute P(tp), P(fp), P(fn)
and P(tn) for each verbatim dj .

First of all let us note that, if the verbatim has been assigned the code,
then P(fn) = P(tn) = 0, so we are left with computing P(tp) and P(fp),
i .e . the probability that the verbatim has been coded correctly and the
probability that the verbatim has been coded incorrectly, respectively;
however, P(fp) = 1 − P(tp), so we need only compute P(tp) . Similarly, if the
verbatim has not been assigned the code, then P(tp) = P(fp) = 0, so we are
left with computing P(tn) and P(fn) = 1 − P(tn), i .e . the probability that the
verbatim has been coded correctly and the probability that the verbatim
has been coded incorrectly, respectively .

So, for each verbatim, the only thing we need to do is to compute the
probability that the verbatim has been coded correctly (let us denote it as

7 The method we are going to discuss in this section is an improved variant of a method that has already been
presented in Berardi et al . (2012) in much greater mathematical detail; an extended version is in preparation
(Berardi et al. 2014) . The goal of the present paper is to give a gentle introduction to the main intuitions of that
approach, while at the same time abstracting away from the hard-core maths of the original paper . Additionally,
in this paper we present new experimental results obtained on survey coding datasets, while the experiments
presented in Berardi et al . (2012) had been run on datasets of newswire reports .
8 Note the difference in notation: by TP (upper-case letters) we indicate the number of true positives as deriving
from the classification of a given set of verbatims, while by tp (lower-case letters) we indicate the event of being a
true positive, as in ‘the probability that the verbatim being inspected is a true positive’ .

International Journal of Market Research Vol. 56 Issue 4

497

P(cor)) . Our automated verbatim coding system helps us in this, since when-
ever it automatically codes a verbatim it returns, along with a binary decision
(‘the code is assigned’ or ‘the code is not assigned’), a numerical score of
confidence in its own decision; the higher the score, the higher the confidence .9
If we trust our classifier, we can take this confidence score as a proxy for
P(cor) – that is, we assume that the more confident the classifier is in its
own decision, the higher the probability that the verbatim has been coded
correctly .

Technically, a confidence score is not yet a probability, since confidence
scores (at least, those output by our system) can take values from 0 (lowest)
to +∞ (highest), which are not probabilities since they do not range on
[0,1] . Luckily enough, we can convert confidence scores into probabilities
via probability calibration methods . Discussing them is beyond the scope
of this paper, so we refer the interested (and mathematically well equipped)
reader to Niculescu-Mizil and Caruana (2005) for a general discussion of
probability calibration, and to Berardi et al . (2012) for a discussion on
how probability calibration is in fact realised in our method .

For our purposes, we may now simply take for granted that the
probabilities discussed in Step 3 can indeed be computed .

Gains
Concerning Step 4, it is natural to define gain G(αj,ωi) as the increase in
accuracy that derives from inspecting and correcting verbatim dj if event
ωi occurs . For instance, G(αj,fp) will be defined as the increase in accuracy
that derives from inspecting and correcting verbatim dj if it turns out to
be a false positive .

First of all, let us note that G(αj,tp) = G(αj,tn) = 0, since there is no
increase in accuracy that derives from inspecting a verbatim that is already
coded correctly . So, only G(αj,fp) and G(αj,fn) are of interest here .

G(αj,fp) may naturally be defined as the increase in F1 that derives from
correcting a false positive, i .e . by removing a false positive from and adding
a true negative to the contingency table:

G fp
TP

TP FP FN
TP

TP FP FNj(,)
()

α = ⋅
⋅ + − +

− ⋅
⋅ + +

2
2 1

2
2

 (3)

9 This is not a prerogative unique to our system; most modern classifiers, be they based on machine learning or
not, return such a confidence score .

Optimising human inspection work in automated verbatim coding

498

where the first summand is F1 after the correction and the second is F1
before the correction . Analogously, G(αj,fn) may be defined as the increase
in F1 that derives from correcting a false negative, i .e . by removing a false
negative and adding a true positive:

G fn
TP

TP FP FN
TP

TP FP FNj(,)
()

() ()
α = ⋅ +

⋅ + + + −
− ⋅

⋅ + +
2 1

2 1 1
2

2
 (4)

However, the problem in this formulation is that the quantities TP, FP
and FN are not known, since at the time of computing the ranking we do
not know if a verbatim has been coded correctly or not . Luckily enough, if
we do not know these quantities we can at least estimate them . This can be
done via a well-known technique called 10-fold cross-validation (see also
Figure 3), which essentially consists of partitioning the training set into ten
equally-sized subsets of verbatims, and running ten train-and-test experiments,

Figure 3 A graphical depiction of the 10-fold cross-validation process

Test

Training

1st train-and-test run

Fold 10Fold 8Fold 6Fold 4Fold 2
Fold 1 Fold 3 Fold 5 Fold 7 Fold 9

Note: Each row represents an experiment (‘run’) in which the ten equally-sized parts (‘folds’) into which the dataset has been partitioned
are subdivided between training data (the nine black boxes in a given row) and test data (the medium tinted box in the same row)

2nd train-and-test run

3rd train-and-test run

4th train-and-test run

5th train-and-test run

6th train-and-test run

7th train-and-test run

8th train-and-test run

9th train-and-test run

10th train-and-test run

International Journal of Market Research Vol. 56 Issue 4

499

each of which consists of using one of the ten subsets (always a different one)
as the test set and the union of the other nine as the training set . The final
contingency table is formed by taking the ten contingency tables generated
by the ten experiments, and pooling them together into a single one (so that,
e .g ., TP contains the sum of the ten TPs from the ten experiments) . If this
final contingency table tells us that, say, 27% of the training verbatims are true
positives, we make the assumption that 27% of the test verbatims are true
positives, too; this process gives us an estimate of the quantities TP, FP, FN,
needed for estimating G(αj,fp) and G(αj,fn) as from Equations 3 and 4 .

We have now reached the point at which the gains discussed in Step 4 can
indeed be estimated . This completes the description of our utility-theoretic
method for ranking the automatically coded verbatims .

Evaluating the effectiveness of ranking methods

What we need now is a methodology for testing the effectiveness of
our utility-theoretic ranking method over real-world datasets and for
comparing it with the effectiveness delivered by other ranking methods .
We will start describing this methodology by introducing a suitable notion
of ‘error reduction’ (i .e . increase in accuracy) .

Given that we have employed F1 as a measure of accuracy, the function
E1 = (1 − F1) is a suitable measure of error . Let us define error at rank
k (noted as E(k)) as the amount of E1 still present in the set D = {d1,
 . . ., dn} of automatically coded verbatims after the coder has inspected
the verbatims at the first k rank positions . Given this definition, E(0)

0.0 0.2 0.4
Inspection length

0.6 0.8 1.0

Er
ro

r r
ed

uc
tio

n
(E

R)

1.0

0.8

0.6

0.4

0.2

0.0

Figure 4 Four curves representing four levels of error reduction as a function of the
inspection depth, as deriving from four different ways of ranking the verbatims in D

Optimising human inspection work in automated verbatim coding

500

is simply the initial error generated by the automated classifier (i .e . the
value of E1 before any verbatim in D has been inspected), and E(|D|) is
0 (where |D| indicates, as customary, the number of elements in D) . The
notion of ‘error at rank k’ allows us to define our final evaluation metric,
error reduction at depth x (noted as ER(x)), defined as the reduction in
E1 obtained by the human coder who inspects the verbatims at the first
x·|D| rank positions, i .e .

ER x
E E x D

E
()

()

()
=

− ⋅()0

0
 (5)

For instance, ER(0 .25) is the reduction in E1 obtained by the human coder
who inspects 25% of the verbatims in D, starting at the top and working
down the ranked list . It is clear from the definition that ER(x) ranges on
the [0,1] interval, where 0 indicates no reduction at all and 1 indicates total
elimination of error .

Figure 4 illustrates the notion of error reduction graphically . The x
axis represents the inspection depth, i .e . the fraction of the set D that
the human coder has inspected, while the y axis represents the error
reduction ER(x) achieved for a given such depth . The four coloured
curves indicate, each for a different ranking of the same set D, the error
reduction obtained by a human coder who inspects the verbatims in D
in the prescribed order . For instance, a human coder who inspects only
20% of the verbatims in D will obtain a reduction in the overall error
present in D of about 0 .20 if the ranking has been performed by the
‘black’ method, and of about 0 .40, 0 .60 and 1 .00 if the ‘light tint’, ‘dark
tint’ and ‘medium tint’ methods, respectively, have been used instead .
So, higher plots represent more cost-effective methods, i .e . methods that
bring about higher levels of increase in accuracy (or reduction in error)
for the same amount of human coder inspection effort . All the curves
start at the origin of the axes (meaning that, no matter what ranking
method is used, no reduction in error is obtained with no inspection
effort) and end in the upper-right corner (meaning that, no matter
what ranking method is used, all error is eliminated if the human coder
inspects all verbatims in D) .

Experiments on real-world datasets

Since we now have a measure of the effectiveness of a given ranking
method, we are ready to specify the experimental protocol we are going to

International Journal of Market Research Vol. 56 Issue 4

501

use . Given a dataset consisting of verbatims manually coded according to a
code c, we go through the following steps .10

1 . We split the dataset into a set of training verbatims and a set of test
verbatims; we train a classifier from the training verbatims .

2 . Using the classifier trained in Step 1, after hiding their true codes to
the classifier we recode all the test verbatims; for each such verbatim,
the classifier returns a binary decision and a confidence score; we fill
the contingency table by checking the binary decisions returned by the
classifier against the corresponding true codes .

3 . Among the test verbatims not yet inspected, we find the one that
maximises expected utility, as detailed in the section headed ‘Ranking
automatically coded verbatims via utility theory’, above .

4 . We check the code assigned to this verbatim by the classifier against its
true code; if they are the same we mark it as inspected and go back to
Step 3, otherwise:
a . we correct the miscoded verbatim and mark it as inspected
b . we update the contingency table accordingly and compute ER(x)

as from Equation 5
c . we recompute the gains as from Equations 3 and 4, and go back

to Step 3 .

This process simulates the activity of a human coder who, after a set of
uncoded verbatims have been automatically coded, inspects all of them in
the order suggested by the provided ranking . By recording all the ER(x)
values obtained in the process, as from Step 4b, above, we can generate
a plot similar to the one of Figure 4, which graphically represents the
effectiveness of our ranking method . By modifying Steps 3 and 4 suitably,
we can generate plots corresponding to other ranking methods, so as to be
able to compare their effectiveness against that of our own method .

10 This experimental protocol, and the fact that in its description we call the codes manually assigned to the
verbatims their ‘true codes’, might be taken to imply that human coders are reliable and consistent, which we
know is usually not the case in practice . However, this is actually a simplifying assumption that is necessary for
making the experiments themselves possible . All the experiments aimed at assessing the accuracy of automatic
coding systems (not only the ones discussed in this paper) need to assume that the test set has been coded by an
authoritative coder, in the sense that they need a ‘gold standard’ against which the results of the automatic system
should be checked; no gold standard, no accuracy tests . If the test set being used for the experiments has instead
been coded unreliably and inconsistently, this simply means that the accuracy values computed on it will be a
pessimistic estimate of the accuracy that would be obtained if the test set had been coded reliably and consistently .

Optimising human inspection work in automated verbatim coding

502

We have subjected our ranking method to thorough experimentation
on datasets of real survey data . For this purpose we have used the same
datasets used in Esuli and Sebastiani (2010); while in that paper we tested
the ability of our software system at coding verbatims automatically,
we here test the ability of our ranking method at maximising the
cost-effectiveness of the human coders’ inspection work .

Table 1 lists the main characteristics of the 15 datasets we have used . The
first ten datasets (LL-A to LL-L) consist of verbatims from market research
surveys and were provided by Language Logic LLC . The LL-B, LL-D and
LL-F to LL-L datasets are from a large consumer packaged-good study,
with both open-ended and brand-list questions . The LL-A, LL-C and LL-E
datasets are instead from one wave of a continuous (‘tracking’) survey that
Language Logic LLC codes 12 times a year, which consists of ‘semi-open’
brand questions (i .e . questions – such as ‘What is your favourite soft drink?’
– which, although in principle eliciting a textual response, usually generate
many responses consisting of only the name of a product or brand, with this

Table 1 Characteristics of the ten market research datasets (LL-A to LL-L), four customer
satisfaction datasets (Egg-A1 to Egg-B2), and one social science dataset (ANES L/D),
which we have used here for experimentation

Dataset #V #Tr #Te #C AVC AVL F1

LL-A 201 140 61 17 15.35 1.21 0.97
LL-B 501 350 151 31 20.48 1.62 0.91
LL-C 201 140 61 17 8.24 1.59 0.98
LL-D 501 350 151 27 31.30 2.05 0.84
LL-E 201 140 61 36 6.53 2.59 0.86
LL-F 501 350 151 56 26.45 3.96 0.81
LL-G 501 350 151 100 15.68 3.87 0.76
LL-H 501 350 151 84 21.73 4.83 0.73
LL-I 501 350 151 67 23.81 4.60 0.76
LL-L 501 350 151 65 20.55 3.15 0.75
Egg-A1 1000 700 300 16 86.56 1.98 0.61
Egg-A2 1000 700 300 16 86.56 1.98 0.59
Egg-B1 926 653 273 21 50.38 1.62 0.54
Egg-B2 926 653 273 21 50.38 1.62 0.52
ANES L/D 2665 1865 800 1 969.00 0.52 0.86

Notes: The columns represent the name of the dataset, the number of verbatims in the dataset (#V), the
number of training verbatims (#Tr) and the number of test verbatims (#Te), the number of codes in the
codeframe (#C), the average number of positive training verbatims per code (AVC), the average training
verbatim length (AVL), and the F1 obtained by the automated classifier (F1); note that the F1 values
reported are different from those reported in (Esuli & Sebastiani 2010) since these latter were obtained
with a different experimental protocol (10-fold cross-validation) than the one used here (train-and-test)

International Journal of Market Research Vol. 56 Issue 4

503

name coming from a small set of such names) . The next four datasets consist
of verbatims from customer satisfaction surveys and were provided by Egg
plc; for both datasets, which were collected in the context of two different
surveys, respondents were answering the question ‘Have we done anything
recently that has especially disappointed you?’ Actually, the Egg-A1 and
Egg-A2 datasets contain the same verbatims, but the test verbatims differ
in the codes applied to them, since they were coded independently by two
different human coders so as to provide data for an inter-coder agreement
study (see e .g . Carey et al. 2006), so we treat them as separate datasets .
The same goes for the Egg-B1 and Egg-B2 datasets . The last dataset (ANES
L/D) consists of verbatims from a political survey run in 1992, which were
obtained from the American National Election Studies (ANES) committee .
Two sets of verbatims were used: the first were returned in answer to the
question ‘Is there anything in particular about Mr Clinton that might make
you want to vote for him? If so, what is that?’, while the second were
returned in answer to the question ‘Is there anything in particular about Mr
Clinton that might make you want to vote against him? What is that?’ Our
coding task consisted of guessing whether the verbatim belongs to the former
or to the latter set . For all these 15 datasets, see Table 1 for more details .11

Figure 5 reports the results (in terms of ER(x)) of our experiments with
five different ranking methods, each represented by a different curve in a
different colour . Since we have 15 datasets, and since the codeframes used in
the different datasets contain up to 100 different codes (see the third column
of Table 1), it would have been too cumbersome to report results for each
individual code . As a result, for each dataset we have computed the average
performance of the method across all the codes in the respective codeframe,
and we have then computed the average performance of the method across
the 15 datasets . So, each curve is the result of testing a ranking method
individually on a total of 594 codes .12 Let us discuss these ranking methods .

The black curve (marked ‘Random’) represents the expected ER(x) values
of the ‘random ranker’, i .e . of an algorithm that presents the verbatims

11 Since some of these datasets are fairly small (e .g . about 200 verbatims), it might be legitimate to wonder
how large a dataset needs to be in order for the conclusions drawn from an experiment to be reliable . We
do not address this point extensively since it would be beyond the scope of this paper . Suffice it to say that
what constitutes a ‘statistically representative sample’ of the set of verbatims that will be encountered in one’s
operational environment is hard to characterise in a few words, and is the main subject of the theory of sampling
(see e .g . Cochran 1977) . For our needs we may simply stick to the (simplistic and intuitive) rule of thumb that
(1) the bigger the test set, the more reliable the results we obtain on it are going to be, provided that (2) the test set
is an ‘as-random-as-possible’ sample of the set of items that need to be coded .
12 Unfortunately we are not allowed to display verbatim examples of the actual data we have used, due to the
fact that, for all of the 15 datasets, we have obtained permission from the owners: (1) to use the data set for
experimentation purposes and (2) to report aggregate numerical performance data in publications, but not (3) to
display any actual verbatim in publications .

Optimising human inspection work in automated verbatim coding

504

in random order for the human coder to inspect . The curve is a perfect
diagonal line, and shows that, e .g ., by inspecting 20% of the verbatims
the human coder may expect to reduce the error present in the dataset by
exactly 20% . This is indeed what might be expected – we cannot expect
better-than-random performance if we act randomly .

The dark tint curve (marked ‘U-Theoretic’) represents our method
as discussed earlier . We can see that the improvement in performance
with respect to the black curve is no less than dramatic; for instance, by
inspecting 20% of the verbatims, the human coder obtains a reduction
in overall error of 60%, instead of 20% as obtained with the random
ranker . This clearly indicates that supporting the work of human coders via
appropriate ranking methods is of fundamental importance for maximising
the cost-effectiveness of their work.

The light tint curve (marked ‘Baseline’) represents a variant of our
method that, instead of using utility theory, uses probability theory alone
– that is, this curve was obtained by setting the G(αj,fp) and G(αj,fn)
values of Equations 3 and 4 to 1, and keeping them at this value for the
entire process . In other words, this method takes into account only the
probability of misclassification of the verbatim, and does not take into
account the fact that correcting a false positive has a different impact on F1
than correcting a false negative . We can observe that this method obtains a
substantially inferior performance than the method based on utility theory,
which confirms the quality of the intuitions underlying the latter .

The tinted dotted curve (marked ‘Oracle1’) actually represents an
‘idealised’ (rather than a ‘real’) ranking method, since it represents how
our utility-theoretic method would behave if we could perfectly guess the

Random

Baseline

utility-theoretic

Oracle1

Oracle2

Figure 5 Five different ranking methods at work on our 15 datasets
Inspection depth

1.0

Er
ro

r r
ed

uc
tio

n
(E

R)

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8

International Journal of Market Research Vol. 56 Issue 4

505

actual values of TP, FP, FN, from which the gains of Equations 3 and 4
are computed . As we noted earlier, since at the time of computing the
rankings we do not know these values, we need to estimate them via 10-fold
cross-validation . We obtained the results represented by the Oracle1 curve
by ‘peeking’ at the real values of TP, FP, FN, and feeding them to our
utility-theoretic method . The reason why we engaged in this seemingly futile
exercise was precisely to know how much we lose because of our (inherent)
inability to perfectly estimate the actual values of TP, FP, FN . The answer
is that we do lose something but this loss is not dramatic, as can be seen
from the difference between the tinted dotted and the dark tint curves . This
suggests that the estimation method we have used is reasonable .

The black dotted curve (marked ‘Oracle2’) represents an even more
idealised method, since it represents how our utility-theoretic method
would behave if we could perfectly guess whether a verbatim has been
coded correctly or not . That is, while Oracle1 has no need to estimate TP,
FP, FN, since it ‘knows’ their true values, Oracle2 has no need to estimate
the probabilities of misclassification described above, in the section titled
‘Probabilities of occurrence’, since for each verbatim it ‘knows’ whether
the verbatim has been miscoded or not .13 Again, the reason we engaged
in this exercise was precisely to know how much we lose by our inability
to precisely know whether the verbatim has been miscoded or not . The
answer is that we lose a lot, as can be seen from the large distance between
the black dotted and the dark tint curve . However, this is somehow
inherent, since if we had a way to precisely know whether a given verbatim
has been miscoded, we would have a way to correct its code assignment
with no human intervention, and we would have no need of engaging
human coders in an inspection task . The only way we can hope to partially
close the gap between the black dotted and the dark tint line is by devising
automatic coding systems with better ‘introspective capabilities’ (i .e . such
that the confidence scores they return are more reliable than the ones we
have used as input), and by devising better probability calibration methods .

ENER(y)

While ER(x) curves provide a nice graphical way of understanding the
performance of a given ranking method, it may also be useful to have
a measure that summarises this performance in a single number . One

13 Note that Oracle2 a fortiori also knows the actual values of TP, FP, FN, so it is strictly a more idealised method
than Oracle1 . Actually, it can be proven that Oracle2 is the best possible ranking method, i .e . it is an absolute
upper bound that no other ranking method, real or idealised, can possibly outperform .

Optimising human inspection work in automated verbatim coding

506

obvious candidate might be the area under the curve that represents
the method . However, one problem with this notion is that a very large
portion of this area (namely, the portion below the black curve) represents
an improvement in accuracy that is due to chance (since the black curve
represents the expected performance of the random ranker); this large
area tends to dwarf any difference between curves representing genuinely
engineered methods (e .g . baseline and U-theoretic) . A second problem
is that this notion does not take into account the fact that lower values
of x (e .g . 0 .20) are more important than higher ones (e .g . 0 .80), since
human coders are more likely to inspect the top-ranked verbatims than the
bottom-ranked ones; so, an improvement in the top 20% portion of the
graph is more important than an improvement in the bottom 20% .

In Berardi et al . (2012), we introduce a measure called ENER(y)
(standing for expected normalised error reduction) . ENER(y) is essentially
the area between the curve representing the method and the ‘Random’
curve, aside from the fact that it pays more importance to small values
of x than to high ones . Exactly how much more importance it pays to
the former than to the latter is determined by the y parameter, which
indicates the expected value of the fraction of the set D that the coder
is going to inspect . For example, y = 0 .05 represents the scenario in
which coders tend to inspect very small portions of the list, while y =
0 .20 envisages coders with higher perseverance . The smaller the value of
y, the less the high values of x weigh in the computation of ENER . As
usual, the interested reader should consult Berardi et al . (2012) for the
mathematical details .

Table 2 lists the ENER(y) values obtained by the methods we have
tested, for three important values of y, i .e . 0 .05, 0 .10, 0 .20 . (As mentioned
above, high values of y represent unlikely scenarios .) The ENER(y) results
reported in the table witness the quality of the intuitions that underlie our
utility-theoretic method, which is seen to substantially outperform the
probability-theoretic baseline for all chosen values of y .

Discussion

The law of diminishing returns

All of the curves (aside from the one representing the ‘Random’ method) in
Figure 5 are fairly steep at the very beginning (i .e . for very low inspection
percentages) and are decreasingly steep as these percentages increase,
flattening out as they reach inspection depth values close to 1 .

International Journal of Market Research Vol. 56 Issue 4

507

One practical effect of this is that the methods represented by these
curves are characterised by a sort of ‘law of diminishing returns’, which
essentially says that the very first phases of annotation work are extremely
cost-effective, the subsequent ones are ‘just’ cost-effective, and the ones
after them are less cost-effective . For instance, with reference to the
example reported in Section 2, if the annotator’s target is to move up from
the initial F1 = 0 .533 value to a value of F1 = 0 .800 (a 50% increase in
F1) she needs to scan only 25% of the ranked list, but if she instead wants
to go up to 0 .850 (a 60% increase in F1) she needs to scan 40% of the
list . So, requiring just (0 .850/0 .800 =) 6% more accuracy requires (40/25
=) 60% more annotation effort . Of course the example given above is
artificial; however, it is realistic enough to illustrate qualitatively a ‘law
of diminishing returns’ that, as evident from the curves of Figure 5, also
holds in practice . Note that it is indeed a goal of a good ranking algorithm
for such a law to be in place; to witness, the ‘Random’ ranking algorithm
implements a situation of constant returns, and this is undesirable .

Easier datasets and harder datasets

As discussed above, the plots of Figure 5 result from averaging across the 15
different datasets of Table 1 . However, it is apparent from the last column of
Table 1 that the LL-A to LL-L and ANES L/D datasets appear ‘easier’ (since
they give rise to F1 values between 0 .73 and 0 .98), while the Egg datasets
appear ‘harder’ (with values of F1 between 0 .52 and 0 .61) . We might wonder
what kind of impact these two groups of datasets have on the collective
results of Figure 5; in particular, we might wonder whether the datasets
characterised by higher F1 are also characterised by higher ER(x) values . To
investigate this, in Figures 6a and 6b we have plotted the results of the same

Table 2 ENER(y) results as a function of the expected fraction of the ranked list that gets
inspected

Method ENER(0.05) ENER(0.10) ENER(0.20)
Random 0.000 0.000 0.000
Baseline 0.109 0.182 0.240
Utility-theoretic 0.165 (+51.3%) 0.234 (+28.5%) 0.286 (+19.1%)
Oracle1 0.196 0.270 0.320
Oracle2 0.344 0.437 0.483

Notes: Improvements indicated for the utility-theoretic method are relative improvements with respect to
the baseline; Oracle2 represents the theoretical upper bound for the performance of any ranking method

Optimising human inspection work in automated verbatim coding

508

five methods of Figure 5, separately averaged across the 11 ‘easier’ datasets
(Figure 6a) and across the four ‘harder’ ones (Figure 6b) .

Two insights can be obtained by looking at these two figures:

1 . all the methods (aside from the ‘Random’ one) perform better on
the 11 datasets characterised by higher F1 than on the four datasets
characterised by lower F1, as witnessed by the fact that the former
curves are markedly more convex than the latter

2 . while the utility-theoretic method outperforms the baseline (probabilistic)
method in both cases, the difference between the two is higher for the
11 datasets characterised by higher F1 than for the four other ones .

The likely reason for the first fact is that, when a dataset is easy to classify
(i .e . it gives rise to high F1), the confidence scores that the classifier
outputs are more reliable, i .e . they tend to correlate better with the true
code assignments; and reliable confidence scores bring about speedier
improvements, since the misclassified examples tend to be concentrated
towards the top of the ranking more densely than they would if the
confidence scores were unreliable .

The likely reason for the second fact is not that the latter four datasets
are easier, but that the average imbalance between positive and negative
examples (i .e . the ratio between the value in the AVC column and the
value in the #V column of Table 1) happens to be smaller for these four
datasets than for the other 11 datasets; a smaller imbalance means that the
difference in gain between correcting a false positive and correcting a false
negative is smaller, which makes the utility-theoretic method more similar
to the baseline (probabilistic) method .

On the practical value of utility-theoretic ranking

It is worthwhile to add a couple of observations on aspects of this method
related to its practical use .

A first observation is that this method lends itself to having more
than one human coder work in parallel on the same inspection task . For
instance, if two human coders work in parallel, coder C′ may be asked to
inspect the verbatims at the odd-numbered positions in the ranking while
coder C″ may be asked to inspect the ones at the even-numbered positions .
In a similar vein, any number of coders may be put to work in parallel on
the same task and still achieve the same cost-effectiveness guaranteed by
the single-coder scenario .

International Journal of Market Research Vol. 56 Issue 4

509

A second observation is that this method is of practical value also because
it allows the human coder to have an estimate, at any stage of the inspection
process, of what level of accuracy has been attained so far . This is obtained by:

•	 estimating the contingency table at the beginning of the process
(e .g . after the verbatims have been automatically coded and before
the inspection process begins) via 10-fold cross-validation; from the
contingency table one can compute F1, which returns an estimate of
the accuracy obtained by the automated classifier

•	 updating the contingency table after each correction is made; again, from
the contingency table one can compute an updated value of F1, which
is an estimate of the accuracy deriving from the combined action of the
automated classifier and the inspection activity of the human coder .

The human coder can thus make an informed decision on when to stop
inspecting, e .g . she may decide to stop when the estimate of the accuracy
obtained so far coincides or exceeds the accuracy level that was requested
by the customer .

Concluding remarks

In more and more application contexts that require verbatim coding, the
use of automated tools is a necessity, due either to the sheer amount of
data that requires coding, or to strict time constraints that may be imposed
on the task, or to issues of cost . However, in some of these scenarios the

0.0 0.2 0.4
Inspection depth

(a)

0.6 0.8 1.0

Er
ro

r r
ed

uc
tio

n
(E

R)
1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4

Inspection depth

(b)

0.6 0.8 1.0

Er
ro

r r
ed

uc
tio

n
(E

R)

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6 Five different ranking methods at work: (a) on the LL-A to LL-L and ANES L/D

datasets, and (b) on the Egg datasets

Random

Baseline

utility-theoretic

Oracle1

Oracle2

Optimising human inspection work in automated verbatim coding

510

customer may insist that coding is to be performed according to a certain
level of accuracy, a level that for some datasets may not be achievable
by current automated coding technology . In these cases, the only way to
achieve the goal may consist in coding the data by machine and then having
one or more human coders review some of the verbatims, with the goal of
performing enough corrections so as to bring accuracy up to the required
level . The method we have presented in this paper explicitly attempts
to maximise the cost-effectiveness of the human coders’ review work by
presenting the verbatims as a ranked list, with the intended meaning that
the effort will be minimised if the coder inspects the verbatims in the
provided order .

What are the takeaway messages that derive from this study? The first
important one is that the order in which the verbatims are inspected
by the human coder is of paramount importance, as witnessed by the
more-than-solid improvements obtained, on 15 survey coding datasets,
by two genuinely engineered ranking methods (indicated as ‘baseline’ and
‘utility-theoretic’, above) with respect to the ‘Random’ method (which
represents a coder that inspects verbatims by picking them in random order) .

The second important message is that we should be very serious about the
mathematical measure we use for evaluating the accuracy of our verbatim
coding systems . A first, fundamental reason (that goes beyond the specific
task and methods discussed in this paper) is that the evaluation measure
must reflect the specific needs of the application . For instance, if the
application is such that the ability to avoid, say, false positives (‘precision’)
is more important than the ability to avoid false negatives (‘recall’), then a
measure that reflects this should be chosen .14 A second reason is that our
method tailors the rankings it generates to the chosen accuracy measure
(whatever this may be), since the gains of Equations 3 and 4 are defined in
terms of it and are thus optimised for it . Altogether, these two facts point to
the importance of developing a culture of evaluation for verbatim coding
endeavours, be they the result of automated tools or not .

As a final (and somehow peripheral) note to the reader, we recall from note
7 that the goal of this paper is to at least convey the gist of a subject matter
that we elsewhere cover in much greater mathematical detail . We are indeed
conscious that the technical material presented here is somehow outside
the tradition of the market research literature, and may appear challenging .

14 F1 is an instance of a more general class of evaluation functions called Fβ, where β ∈ [0,+∞) is a parameter
that sets the relative importance of precision and recall (see Sebastiani 2002, p . 36) . Values of β smaller than 1
emphasise precision at the expense of recall, values higher than 1 emphasise recall at the detriment of precision,
while β = 1 enforces equal attention to precision and recall .

International Journal of Market Research Vol. 56 Issue 4

511

However, quite aside from the specific topics dealt with in this paper, we
think this represents an opportunity to reflect, given the growing importance
that text mining/text analytics/sentiment analysis have in market research,
whether market research scholars and practitioners should or should not
attempt to understand what lies beneath the surface of the text analysis tools
that are being proposed to them by text analysis companies . Although this
may require market researchers to upgrade their mathematical toolbox a bit,
we think this should be the case, lest an entire discipline is taken hostage by
vendors wanting to hide more than they want to clarify .

Acknowledgements

Most of this material was originally presented in September 2013 at the
conference of the Association of Survey Computing, Winchester, UK,
during a keynote talk delivered by the third author, who would like to
thank the Conference Chairmen, David Birks and Tim Macer, for inviting
him to deliver this talk in such a stimulating environment . Thanks also
to Ivano Luberti for many interesting discussions, and to two anonymous
reviewers for providing many stimulating comments .

References
Alpaydin, E . (2010) Introduction to Machine Learning (2nd edn) . Cambridge, MA: The MIT Press .
Anand, P . (1993) Foundations of Rational Choice under Risk . Oxford, UK: Oxford University Press .
Berardi, G ., Esuli, A . & Sebastiani, F . (2012) A utility-theoretic ranking method for semi-automated

text classification . Proceedings of the 35th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2012) . Portland, OR, pp . 961–970 .

Berardi, G ., Esuli, A . & Sebastiani, F . (2014) Utility-theoretic ranking for semi-automated
text classification . Technical report, forthcoming . Istituto di Scienza e Tecnologie
dell’Informazione, Consiglio Nazionale delle Ricerche . Pisa, Italy .

Carey, J .W ., Morgan, M . & Oxtoby, M .J . (2006) Intercoder agreement in analysis of
responses to open-ended interview questions: examples from tuberculosis research . Cultural
Anthropology Methods, 8, 3, pp . 1–5 .

Cochran, W .G . (1977) Sampling Techniques (3rd edn) . New York, NY: John Wiley & Sons .
Esuli, A . & Sebastiani, F . (2010) Machines that learn how to code open-ended survey data .

International Journal of Market Research, 52, 6, pp . 775–800 .
Giorgetti, D . & Sebastiani, F . (2003) Automating survey coding by multiclass text

categorization techniques . Journal of the American Society for Information Science and
Technology, 54, 14, pp . 1269–1277 .

Giorgetti, D ., Prodanof, I . & Sebastiani, F . (2003) Automatic coding of open-ended questions
using text categorization techniques . Proceedings of the 4th International Conference of the
Association for Survey Computing (ASCIC 2003) . Warwick, UK, pp . 173–184 .

Macer, T ., Pearson, M . & Sebastiani, F . (2007) Cracking the code: what customers say, in their
own words . Proceedings of the 50th Annual Conference of the Market Research Society (MRS
2007) . Brighton, UK .

Optimising human inspection work in automated verbatim coding

512

Martinez-Alvarez, M ., Yahyaei, S . & Roelleke, T . (2012) Semi-automatic document
classification: exploiting document difficulty . Proceedings of the 34th European Conference
on Information Retrieval (ECIR 2012) . Barcelona, Spain .

Mohri, M ., Rostamizadeh, A . & Talwalkar, A . (2012) Foundations of Machine Learning .
Cambridge, MA: The MIT Press .

Niculescu-Mizil, A . & Caruana, R . (2005) Obtaining calibrated probabilities from boosting .
Proceedings of the 21st Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI 2005) . Arlington, US, pp . 413–420 .

Sebastiani, F . (2002) Machine learning in automated text categorization . ACM Computing
Surveys, 34, 1, pp . 1–47 .

von Neumann, J . & Morgenstern, O . (1944) Theory of Games and Economic Behavior .
Princeton, NJ: Princeton University Press .

About the authors

Giacomo Berardi is a research fellow at the Institute for the Science
and Technologies of Information of the National Council of Research
(ISTI-CNR), Italy . In 2014 he obtained a Ph .D . in Information Engineering
from the University of Pisa . His main research interests are at the
intersection of information retrieval, machine learning and natural language
processing, with particular emphasis on automated and semi-automated
text classification, web mining and blog search .

Andrea Esuli is a researcher at the Institute for the Science and Technologies
of Information of the National Council of Research (ISTI-CNR), Italy . In
2008 he obtained a Ph .D . in Information Engineering from the University
of Pisa . He is the recipient of the 2010 Cor Baayen Award, awarded by the
European Research Council for Informatics and Mathematics . His research
covers the fields of text classification, opinion mining, information
retrieval, computational linguistics and content-based image search .

Fabrizio Sebastiani is a Senior Researcher at the Institute for the Science and
Technologies of Information of the National Council of Research (ISTI-CNR),
Italy; before 2006 he was an Associate Professor at the Department of Pure
and Applied Mathematics of the University of Padova, Italy . His main research
interests are at the intersection of information retrieval, machine learning and
human language technologies, with particular emphasis on text classification,
information extraction, opinion mining and their applications .

Address correspondence to: Giacomo Berardi, Istituto di Scienza e Tecnologie
dell’Informazione, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy .

Email: giacomo .berardi@isti .cnr .it

