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Automatic verbatim coding technology is essential in many contexts in which, 
either because of the sheer size of the dataset we need to code, or because of 
demanding time constraints, or because of cost-effectiveness issues, manual coding 
is not a viable option . However, in some of these contexts the accuracy standards 
imposed by the customer may be too high for today’s automated verbatim coding 
technology; this means that human coders may need to devote some time to 
inspecting (and correcting where appropriate) the most problematic autocoded 
verbatims, with the goal of increasing the accuracy of the coded set . We discuss 
a software tool for optimising the human coders’ work, i .e . a tool that minimises 
the amount of human inspection required to reduce the overall error down to a 
desired level, or that (equivalently) maximises the reduction in the overall error 
achieved for an available amount of human inspection work .

Introduction

In the past ten years we have championed an approach to automatically 
coding open-ended answers (‘verbatims’) based on ‘machine learning’ 
(Giorgetti & Sebastiani 2003) . Based on these principles we have built an 
automated verbatim coding system, which we have variously applied to 
coding surveys in the social sciences (Giorgetti et al. 2003), in customer 
relationship management (Macer et al. 2007) and in market research (Esuli 
& Sebastiani 2010) .

1  The order in which the authors are listed is purely alphabetical; each author has made an equally important 
contribution to this work . 
2  Fabrizio Sebastiani is on leave from Consiglio Nazionale delle Ricerche . 
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This system (see Figure 1) is based on a supervised learning metaphor: the 
system learns, from sample manually coded verbatims (training examples), 
the characteristics a new uncoded verbatim (a test example) should have 
in order to be attributed a given code; the human operator who feeds the 
training examples to the system plays the role of the ‘supervisor’ (Alpaydin 
2010; Mohri et al. 2012) .

The machine learning approach to automated verbatim coding has 
shown very good accuracy in many real-world studies (see Esuli and 
Sebastiani (2010) for examples) . However, there may indeed be scenarios 
in which the accuracy standards imposed by the customer (e .g . as specified 
in a service level agreement) are too demanding, not only for this approach 
but for any existing automated verbatim coding technology . If full manual 
coding by expert coders is not a viable option (due to the sheer size of the 
dataset that needs coding, or to demanding time constraints, or to cost 
issues, or to a combination of all these), a possible strategy may consist in 
coding the data by means of an automatic method, and then having one 
or more human coders inspect (and correct where appropriate) the most 
problematic among the automatically coded verbatims .2

In this paper we will be interested in application scenarios of the latter 
kind . Specifically, the task we will set ourselves will be that of devising 
software tools that support the post-coding inspection work by the human 
coders . For us, supporting the coders’ work will mean maximising the 
cost-effectiveness of their work; in other words, we will be interested in 
software methods that minimise the amount of human inspection work 
required to reduce the overall error in the data down to a certain level, or 
that (equivalently) maximise the reduction in the overall error achieved for 
a certain amount of human coder’s inspection work .

2 In the rest of this paper we will simply write ‘inspect’ to actually mean ‘inspect and correct where appropriate’ .

Figure 1  Architecture of a verbatim coding system based on supervised machine learning
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A worked-out example

In order to see how human coders may be effectively supported in their 
post-editing work, let us look at a specific example . Let us assume that the 
coding task consists in deciding whether a given code applies or not to any 
of a set of uncoded verbatims; coding according to an entire codeframe is 
qualitatively analogous, since the process above can be repeated for each 
code in the codeframe .

Let us also assume that a set of uncoded verbatims has been automatically 
coded; for simplicity of illustration we here assume that this set consists 
of 20 verbatims only . We can measure the accuracy obtained in this 
automatic coding job by (1) choosing an accuracy measure, (2) filling 
out a contingency table, and (3) evaluating the chosen measure on this 
table . For illustration purposes we assume that our accuracy measure is 
the well-known F1 measure (see Esuli and Sebastiani (2010) for a detailed 
discussion), defined as

F
TP

TP FP FN1

2
2

= ⋅
⋅ + +( )

 (2)

where by TP, FP, FN, TN, we indicate, as customary, the number of true 
positives, false positives, false negatives, true negatives, derived from the 
automatic coding; F1 values range from 0 (worst) to 1 (best) .

Figure 2 depicts a situation in which the automated coding process has 
returned 4 true positives, 3 false positives, 4 false negatives, and 9 true 
negatives, resulting in a value of F1 = 2·4/(2·4+3+4) = 0 .533 . The 20 
verbatims are represented in the two rows at the bottom via tinted and 
black cards; the upper row represents the coding decisions of the system 
(‘predictions’), while the lower row represents the correct decisions that 
an ideal system would have taken . A tinted card represents a ‘yes’ (the 
verbatim has the code), while a black card represents a ‘no’ (the verbatim 
does not have the code); a correct decision is thus represented by the upper 
and lower card in the same column having the same colour .3

Let us imagine a scenario in which the customer insists that the data must 
be coded with an accuracy level of at least F1 = 0 .800 . In this case, after 
checking that the value of F1 that the automatic classifier has obtained is 
0 .533, the human coder decides to inspect some of the verbatims until the 

3 Note that this example is artificial and is for illustration purposes only . In the real-world coding studies reported 
in Esuli and Sebastiani (2010), our automated verbatim coding system has always obtained higher F1 values, 
ranging from 0 .55 to 0 .92 depending on the number of training examples available and on the inherent difficulty 
of the coding task .
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desired level of accuracy has been obtained .4 Let us assume that the coder 
examines the verbatims at the bottom of Figure 2 in left-to-right order . 
The first verbatim that the coder examines is a true positive; no correction 
needs to be done, the value of F1 is unmodified, and the coder moves on to 
the second verbatim . This is a false negative, and correcting it decreases FN 
by 1 and increases TP by 1, which means that F1 now becomes F1 = 2·5/
(2·5+3+3) = 0 .625 . The third is a false positive, and correcting it decreases 
FP by 1 and increases TN by 1, which means that F1 now becomes F1 = 
2·5/(2·5+2+3) = 0 .667 . The fourth is a false negative, which brings about 
F1 = 2·6/(2·6+2+2) = 0 .750, and the fifth is a false positive, which yields 
F1 = 2·6/(2·6+1+2) = 0 .800 . At this point, having reached the minimum 
level of accuracy required by the customer, the human coder’s task is over .

Ranking the automatically coded verbatims

In the example illustrated in the previous section, bringing F1 from 0 .533 
up to 0 .800 has required the inspection of five verbatims, i .e . 25% of the 
entire set . Could the human coder have achieved the same improvement in 
accuracy with a smaller effort (i .e . by inspecting fewer verbatims)? Could 
she, by putting in the same effort, have reached a level of accuracy higher 
than F1 = 0 .800? The answer to both questions is yes, and the key to doing 
better is the order in which the verbatims are inspected .

4 Actually, the human coder does not know the level of accuracy that the automatic classifier has obtained, since 
she does not know the true code assignments of the verbatims . However, this level of accuracy can be at least 
estimated in real time, via a technique called ‘10-fold cross-validation’, which will be discussed below .

Figure 2  A worked-out example, representing a contingency table (upper-left part of the 
figure) deriving from the automatically coded examples (lower part) and from which accuracy 
is computed (formula in the upper-right part)
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For instance, the fact that the first inspected verbatim was a true positive 
was suboptimal . Inspecting verbatims that have been coded correctly is, 
for the human coder, wasted time, since no correction is performed and F1 
remains thus unmodified . Of course, there is no way to know in advance 
if the verbatim has been coded incorrectly or not . However, it would at 
least be desirable to know how likely it is that the verbatim has been coded 
incorrectly, i .e . to know its probability of misclassification; in this case, the 
system might rank the automatically coded verbatims in such a way as to 
top-rank the verbatims that have the highest such probability .

A second fact that jumps to the eye in the worked-out example of the 
previous section is that the increase in accuracy (i .e . the gain) determined 
by the correction of a false negative is higher (sometimes much higher) than 
the gain determined by the correction of a false positive . For instance, in 
correcting the second verbatim (a false negative) F1 jumped from 0 .533 to 
0 .625 (a +17 .1% relative increase), while in correcting the third verbatim 
(a false positive) F1 moved only from 0 .625 to 0 .667 (a mere +6 .6% 
relative increase) . This is not an idiosyncrasy of the F1 measure, since for 
many accuracy measures the gain deriving from the correction of a false 
positive is different than the one deriving from the correction of a false 
negative .5 So, the fact that two false positives were inspected and corrected 
while two false negatives were left uninspected and uncorrected (in 11th 
and 20th position, respectively) was also suboptimal . This means that the 
system should, other things being equal, rank higher those verbatims (the 
false negatives, in our case) that bring about a higher gain when corrected . 
In the example of the previous section, had we ranked the four false 
negatives at the top four rank positions and a false positive at the fifth, 
the same amount of human coder inspection work would have brought 
about an increase in F1 from 0 .533 to 0 .889 (instead of 0 .800); had we 
instead been happy with reaching F1 = 0 .800, the human coder would have 
reached it by inspecting and correcting only the four top-ranked verbatims 
(actually, by doing this she would have reached F1 = 0 .842) .

In sum, we have learned two key facts .
The first is that the order in which the human coder inspects the 

automatically coded verbatims is what determines the cost-effectiveness 
of her work . This fact should come as no surprise: the task of ranking 

5 Note that this asymmetry holds despite the fact that F1 pays equal attention to the ability of the system to avoid 
false positives (known as precision, and defined as π = TP/(TP+FP) and to the ability of the system to avoid false 
negatives (known as recall, and defined as ρ = TP/(TP+FN); in fact, F1 = (2·π·ρ)/(π+ρ) = (2· TP)/(2·TP+FP+FN) . In 
other measures that, say, pay more attention to recall than to precision, the difference between the gain obtained 
by correcting a false positive and the gain obtained by correcting a false negative is amplified .
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a set of digital objects in terms of perceived usefulness to a given task 
is of paramount importance in today’s computer science as a whole, as 
perfectly exemplified by current search engines .6 The task of ranking 
the automatically coded verbatims with the goal of maximising the 
cost-effectiveness of a human coder who scans (inspecting and correcting) 
the ranked list down to a certain depth, has been called Semi-Automatic 
Text Classification (SATC) (Berardi et al. 2012; Martinez-Alvarez et al. 
2012), to reflect the fact that it attempts to optimise a pipeline in 
which human and machine cooperate in achieving the goal of accurate 
classification .

The second fact we have learned is that, if we want to order these 
verbatims so as to maximise the cost-effectiveness of the human coder’s 
work, we should take two main factors into account, i .e . (1) the probability 
of misclassification of a given verbatim, and (2) the gain in coding accuracy 
that the verbatim brings about once inspected and corrected .

Utility theory

What kind of mathematical theory should we use in order to devise such 
a ranking function?

The need to account for probabilities and gains immediately evokes 
utility theory, an extension of probability theory that incorporates the 
notion of gain (or loss) that accrues from a given course of action (von 
Neumann and Morgenstern 1944; Anand 1993) . Utility theory is a general 
theory of rational action under uncertainty, and as such is used in many 
fields of human activity . For instance, utility theory is of paramount 
importance in betting, since in placing a certain bet we take into account 
(1) the probabilities of occurrence that we subjectively attribute to a set 
of outcomes (say, to the possible outcomes of the Arsenal FC vs Chelsea 
FC game), and (2) the gains or losses that we obtain, having bet on one of 
them, if the various outcomes materialise .

In order to explain our method let us introduce some basics of utility 
theory . Given a set A = {α1,  . . ., αm} of possible courses of action and a set 
Ω = {ω1,  . . ., ωn} of mutually disjoint events, the expected utility U(αj, Ω) 
that derives from choosing course of action αj, given that any of the events 
in Ω may occur, is defined as

6 The main factor that, in the late 1990s, decreed the success of Google over its then-competitors (e .g . AltaVista, 
Inktomi) was exactly its superior ranking function . Nowadays it is fair to say that the ranking function that 
Google uses is as secret as the recipe for Coca-Cola .
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where P(ωi) is the probability of occurrence of event ωi, and G(αj,ωi) is 
the gain obtained if, given that αj has been chosen, event ωi occurs . For 
instance, αj may be the course of action ‘betting on Arsenal FC’s win’ and 
Ω may be the set of mutually disjoint events Ω = {ω1, ω2, ω3}, where ω1 = 
‘Arsenal FC wins’, ω2 = ‘Arsenal FC and Chelsea FC tie’, and ω3 = ‘Chelsea 
FC wins’; in this case,

•	 P(ω1), P(ω2) and P(ω3) are the probabilities of occurrence that we 
subjectively attribute to the three events ω1, ω2 and ω3

•	 G(αj, ω1), G(αj, ω2) and G(αj, ω3) are the economic rewards we obtain, 
given that we have chosen course of action αj (i .e . given that we have 
bet on the win of Arsenal FC), if the respective event occurs; of course, 
our economic reward will be positive if ω1 occurs and negative if either 
ω2 or ω3 occur .

When we face alternative courses of action, acting rationally means 
choosing the course of action that maximises our expected utility . For 
instance, given the alternative courses of action α1 = ‘betting on Arsenal 
FC’s win’, α2 = ‘betting on Arsenal FC’s and Chelsea FC’s tie’, α3 = ‘betting 
on Chelsea FC’s win’, we should pick among {α1,α2,α3} the course of 
action that maximises U(αj, Ω) .

Ranking automatically coded verbatims via utility theory

How does this translate into a method for ranking automatically coded 
verbatims? Assume we have a set D = {d1,  . . ., dn} of automatically coded 
verbatims that we want to rank, and assume that F1 is our evaluation 
measure . For instantiating Equation 2 concretely we need:

1 . to decide what our set A = {α1,  . . ., αm} of alternative courses of action 
is

2 . to decide what the set Ω = {ω1,  . . ., ωn} of mutually disjoint events is
3 . to specify how we compute their probabilities of occurrence P(ωi)
4 . to define the gains G(αj, ωi) .
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Let us discuss each of these steps in turn .7

Courses of action
Concerning Step 1, we will take the action of inspecting (and correcting, 
if needed) verbatim dj as course of action αj . In this way we will evaluate 
the expected utility U(dj,Ω) (i .e . the expected increase in overall accuracy) 
that derives from inspecting each verbatim dj, and we will be able to rank 
the verbatims by their U(dj,Ω) value, so as to top-rank the ones with the 
highest expected utility .

Events
Concerning Step 2, we have argued that the increase in accuracy that 
derives from inspecting (and correcting if needed) a verbatim depends on 
whether the verbatim is a true positive, a false positive, a false negative 
or a true negative; as a consequence, we will take Ω = {tp,fp,fn,tn} . For 
instance, when evaluating U(dj,Ω), the expression P(tp) will mean ‘the 
probability that dj is a true positive’ .8

Probabilities of occurrence

Concerning Step 3, we need to describe how to compute P(tp), P(fp), P(fn) 
and P(tn) for each verbatim dj .

First of all let us note that, if the verbatim has been assigned the code, 
then P(fn) = P(tn) = 0, so we are left with computing P(tp) and P(fp), 
i .e . the probability that the verbatim has been coded correctly and the 
probability that the verbatim has been coded incorrectly, respectively; 
however, P(fp) = 1 − P(tp), so we need only compute P(tp) . Similarly, if the 
verbatim has not been assigned the code, then P(tp) = P(fp) = 0, so we are 
left with computing P(tn) and P(fn) = 1 − P(tn), i .e . the probability that the 
verbatim has been coded correctly and the probability that the verbatim 
has been coded incorrectly, respectively .

So, for each verbatim, the only thing we need to do is to compute the 
probability that the verbatim has been coded correctly (let us denote it as  

7 The method we are going to discuss in this section is an improved variant of a method that has already been 
presented in Berardi et al . (2012) in much greater mathematical detail; an extended version is in preparation 
(Berardi et al. 2014) . The goal of the present paper is to give a gentle introduction to the main intuitions of that 
approach, while at the same time abstracting away from the hard-core maths of the original paper . Additionally, 
in this paper we present new experimental results obtained on survey coding datasets, while the experiments 
presented in Berardi et al . (2012) had been run on datasets of newswire reports .
8 Note the difference in notation: by TP (upper-case letters) we indicate the number of true positives as deriving 
from the classification of a given set of verbatims, while by tp (lower-case letters) we indicate the event of being a 
true positive, as in ‘the probability that the verbatim being inspected is a true positive’ .



International Journal of Market Research Vol. 56 Issue 4

497

P(cor)) . Our automated verbatim coding system helps us in this, since when-
ever it automatically codes a verbatim it returns, along with a binary decision  
(‘the code is assigned’ or ‘the code is not assigned’), a numerical score of  
confidence in its own decision; the higher the score, the higher the confidence .9 
If we trust our classifier, we can take this confidence score as a proxy for 
P(cor) – that is, we assume that the more confident the classifier is in its 
own decision, the higher the probability that the verbatim has been coded 
correctly .

Technically, a confidence score is not yet a probability, since confidence 
scores (at least, those output by our system) can take values from 0 (lowest) 
to +∞ (highest), which are not probabilities since they do not range on 
[0,1] . Luckily enough, we can convert confidence scores into probabilities 
via probability calibration methods . Discussing them is beyond the scope 
of this paper, so we refer the interested (and mathematically well equipped) 
reader to Niculescu-Mizil and Caruana (2005) for a general discussion of 
probability calibration, and to Berardi et al . (2012) for a discussion on 
how probability calibration is in fact realised in our method .

For our purposes, we may now simply take for granted that the 
probabilities discussed in Step 3 can indeed be computed .

Gains
Concerning Step 4, it is natural to define gain G(αj,ωi) as the increase in 
accuracy that derives from inspecting and correcting verbatim dj if event 
ωi occurs . For instance, G(αj,fp) will be defined as the increase in accuracy 
that derives from inspecting and correcting verbatim dj if it turns out to 
be a false positive .

First of all, let us note that G(αj,tp) = G(αj,tn) = 0, since there is no 
increase in accuracy that derives from inspecting a verbatim that is already 
coded correctly . So, only G(αj,fp) and G(αj,fn) are of interest here .

G(αj,fp) may naturally be defined as the increase in F1 that derives from 
correcting a false positive, i .e . by removing a false positive from and adding 
a true negative to the contingency table:

G fp
TP

TP FP FN
TP

TP FP FNj( , )
( )

α = ⋅
⋅ + − +

− ⋅
⋅ + +

2
2 1

2
2

 (3)

9 This is not a prerogative unique to our system; most modern classifiers, be they based on machine learning or 
not, return such a confidence score .
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where the first summand is F1 after the correction and the second is F1 
before the correction . Analogously, G(αj,fn) may be defined as the increase 
in F1 that derives from correcting a false negative, i .e . by removing a false 
negative and adding a true positive:

G fn
TP

TP FP FN
TP

TP FP FNj( , )
( )

( ) ( )
α = ⋅ +

⋅ + + + −
− ⋅

⋅ + +
2 1

2 1 1
2

2
 (4)

However, the problem in this formulation is that the quantities TP, FP 
and FN are not known, since at the time of computing the ranking we do 
not know if a verbatim has been coded correctly or not . Luckily enough, if 
we do not know these quantities we can at least estimate them . This can be 
done via a well-known technique called 10-fold cross-validation (see also 
Figure 3), which essentially consists of partitioning the training set into ten 
equally-sized subsets of verbatims, and running ten train-and-test experiments, 

Figure 3  A graphical depiction of the 10-fold cross-validation process
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each of which consists of using one of the ten subsets (always a different one) 
as the test set and the union of the other nine as the training set . The final 
contingency table is formed by taking the ten contingency tables generated 
by the ten experiments, and pooling them together into a single one (so that, 
e .g ., TP contains the sum of the ten TPs from the ten experiments) . If this 
final contingency table tells us that, say, 27% of the training verbatims are true 
positives, we make the assumption that 27% of the test verbatims are true 
positives, too; this process gives us an estimate of the quantities TP, FP, FN, 
needed for estimating G(αj,fp) and G(αj,fn) as from Equations 3 and 4 .

We have now reached the point at which the gains discussed in Step 4 can 
indeed be estimated . This completes the description of our utility-theoretic 
method for ranking the automatically coded verbatims .

Evaluating the effectiveness of ranking methods

What we need now is a methodology for testing the effectiveness of 
our utility-theoretic ranking method over real-world datasets and for 
comparing it with the effectiveness delivered by other ranking methods . 
We will start describing this methodology by introducing a suitable notion 
of ‘error reduction’ (i .e . increase in accuracy) .

Given that we have employed F1 as a measure of accuracy, the function 
E1 = (1 − F1) is a suitable measure of error . Let us define error at rank 
k (noted as E(k)) as the amount of E1 still present in the set D = {d1, 
 . . ., dn} of automatically coded verbatims after the coder has inspected 
the verbatims at the first k rank positions . Given this definition, E(0) 
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Figure 4  Four curves representing four levels of error reduction as a function of the 
inspection depth, as deriving from four different ways of ranking the verbatims in D
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is simply the initial error generated by the automated classifier (i .e . the 
value of E1 before any verbatim in D has been inspected), and E(|D|) is 
0 (where |D| indicates, as customary, the number of elements in D) . The 
notion of ‘error at rank k’ allows us to define our final evaluation metric, 
error reduction at depth x (noted as ER(x)), defined as the reduction in 
E1 obtained by the human coder who inspects the verbatims at the first 
x·|D| rank positions, i .e .

ER x
E E x D

E
( )

( )

( )
=

− ⋅( )0

0
 (5)

For instance, ER(0 .25) is the reduction in E1 obtained by the human coder 
who inspects 25% of the verbatims in D, starting at the top and working 
down the ranked list . It is clear from the definition that ER(x) ranges on 
the [0,1] interval, where 0 indicates no reduction at all and 1 indicates total 
elimination of error .

Figure 4 illustrates the notion of error reduction graphically . The x 
axis represents the inspection depth, i .e . the fraction of the set D that 
the human coder has inspected, while the y axis represents the error 
reduction ER(x) achieved for a given such depth . The four coloured 
curves indicate, each for a different ranking of the same set D, the error 
reduction obtained by a human coder who inspects the verbatims in D 
in the prescribed order . For instance, a human coder who inspects only 
20% of the verbatims in D will obtain a reduction in the overall error 
present in D of about 0 .20 if the ranking has been performed by the 
‘black’ method, and of about 0 .40, 0 .60 and 1 .00 if the ‘light tint’, ‘dark 
tint’ and ‘medium tint’ methods, respectively, have been used instead . 
So, higher plots represent more cost-effective methods, i .e . methods that 
bring about higher levels of increase in accuracy (or reduction in error) 
for the same amount of human coder inspection effort . All the curves 
start at the origin of the axes (meaning that, no matter what ranking 
method is used, no reduction in error is obtained with no inspection 
effort) and end in the upper-right corner (meaning that, no matter 
what ranking method is used, all error is eliminated if the human coder 
inspects all verbatims in D) .

Experiments on real-world datasets

Since we now have a measure of the effectiveness of a given ranking 
method, we are ready to specify the experimental protocol we are going to 
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use . Given a dataset consisting of verbatims manually coded according to a 
code c, we go through the following steps .10

1 . We split the dataset into a set of training verbatims and a set of test 
verbatims; we train a classifier from the training verbatims .

2 . Using the classifier trained in Step 1, after hiding their true codes to 
the classifier we recode all the test verbatims; for each such verbatim, 
the classifier returns a binary decision and a confidence score; we fill 
the contingency table by checking the binary decisions returned by the 
classifier against the corresponding true codes .

3 . Among the test verbatims not yet inspected, we find the one that 
maximises expected utility, as detailed in the section headed ‘Ranking 
automatically coded verbatims via utility theory’, above .

4 . We check the code assigned to this verbatim by the classifier against its 
true code; if they are the same we mark it as inspected and go back to 
Step 3, otherwise:
a . we correct the miscoded verbatim and mark it as inspected
b . we update the contingency table accordingly and compute ER(x) 

as from Equation 5
c . we recompute the gains as from Equations 3 and 4, and go back 

to Step 3 .

This process simulates the activity of a human coder who, after a set of 
uncoded verbatims have been automatically coded, inspects all of them in 
the order suggested by the provided ranking . By recording all the ER(x) 
values obtained in the process, as from Step 4b, above, we can generate 
a plot similar to the one of Figure 4, which graphically represents the 
effectiveness of our ranking method . By modifying Steps 3 and 4 suitably, 
we can generate plots corresponding to other ranking methods, so as to be 
able to compare their effectiveness against that of our own method .

10 This experimental protocol, and the fact that in its description we call the codes manually assigned to the 
verbatims their ‘true codes’, might be taken to imply that human coders are reliable and consistent, which we 
know is usually not the case in practice . However, this is actually a simplifying assumption that is necessary for 
making the experiments themselves possible . All the experiments aimed at assessing the accuracy of automatic 
coding systems (not only the ones discussed in this paper) need to assume that the test set has been coded by an 
authoritative coder, in the sense that they need a ‘gold standard’ against which the results of the automatic system 
should be checked; no gold standard, no accuracy tests . If the test set being used for the experiments has instead 
been coded unreliably and inconsistently, this simply means that the accuracy values computed on it will be a 
pessimistic estimate of the accuracy that would be obtained if the test set had been coded reliably and consistently .
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We have subjected our ranking method to thorough experimentation 
on datasets of real survey data . For this purpose we have used the same 
datasets used in Esuli and Sebastiani (2010); while in that paper we tested 
the ability of our software system at coding verbatims automatically, 
we here test the ability of our ranking method at maximising the 
cost-effectiveness of the human coders’ inspection work .

Table 1 lists the main characteristics of the 15 datasets we have used . The 
first ten datasets (LL-A to LL-L) consist of verbatims from market research 
surveys and were provided by Language Logic LLC . The LL-B, LL-D and 
LL-F to LL-L datasets are from a large consumer packaged-good study, 
with both open-ended and brand-list questions . The LL-A, LL-C and LL-E 
datasets are instead from one wave of a continuous (‘tracking’) survey that 
Language Logic LLC codes 12 times a year, which consists of ‘semi-open’ 
brand questions (i .e . questions – such as ‘What is your favourite soft drink?’ 
– which, although in principle eliciting a textual response, usually generate 
many responses consisting of only the name of a product or brand, with this 

Table 1  Characteristics of the ten market research datasets (LL-A to LL-L), four customer 
satisfaction datasets (Egg-A1 to Egg-B2), and one social science dataset (ANES L/D), 
which we have used here for experimentation

Dataset #V #Tr #Te #C AVC AVL F1

LL-A 201 140 61 17 15.35 1.21 0.97 
LL-B 501 350 151 31 20.48 1.62 0.91 
LL-C 201 140 61 17 8.24 1.59 0.98 
LL-D 501 350 151 27 31.30 2.05 0.84 
LL-E 201 140 61 36 6.53 2.59 0.86 
LL-F 501 350 151 56 26.45 3.96 0.81 
LL-G 501 350 151 100 15.68 3.87 0.76 
LL-H 501 350 151 84 21.73 4.83 0.73 
LL-I 501 350 151 67 23.81 4.60 0.76 
LL-L 501 350 151 65 20.55 3.15 0.75 
Egg-A1 1000 700 300 16 86.56 1.98 0.61 
Egg-A2 1000 700 300 16 86.56 1.98 0.59 
Egg-B1 926 653 273 21 50.38 1.62 0.54 
Egg-B2 926 653 273 21 50.38 1.62 0.52 
ANES L/D 2665 1865 800 1 969.00 0.52 0.86 

Notes: The columns represent the name of the dataset, the number of verbatims in the dataset (#V), the 
number of training verbatims (#Tr) and the number of test verbatims (#Te), the number of codes in the 
codeframe (#C), the average number of positive training verbatims per code (AVC), the average training 
verbatim length (AVL), and the F1 obtained by the automated classifier (F1); note that the F1 values 
reported are different from those reported in (Esuli & Sebastiani 2010) since these latter were obtained 
with a different experimental protocol (10-fold cross-validation) than the one used here (train-and-test)
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name coming from a small set of such names) . The next four datasets consist 
of verbatims from customer satisfaction surveys and were provided by Egg 
plc; for both datasets, which were collected in the context of two different 
surveys, respondents were answering the question ‘Have we done anything 
recently that has especially disappointed you?’ Actually, the Egg-A1 and 
Egg-A2 datasets contain the same verbatims, but the test verbatims differ 
in the codes applied to them, since they were coded independently by two 
different human coders so as to provide data for an inter-coder agreement 
study (see e .g . Carey et al. 2006), so we treat them as separate datasets . 
The same goes for the Egg-B1 and Egg-B2 datasets . The last dataset (ANES 
L/D) consists of verbatims from a political survey run in 1992, which were 
obtained from the American National Election Studies (ANES) committee . 
Two sets of verbatims were used: the first were returned in answer to the 
question ‘Is there anything in particular about Mr Clinton that might make 
you want to vote for him? If so, what is that?’, while the second were 
returned in answer to the question ‘Is there anything in particular about Mr 
Clinton that might make you want to vote against him? What is that?’ Our 
coding task consisted of guessing whether the verbatim belongs to the former 
or to the latter set . For all these 15 datasets, see Table 1 for more details .11

Figure 5 reports the results (in terms of ER(x)) of our experiments with 
five different ranking methods, each represented by a different curve in a 
different colour . Since we have 15 datasets, and since the codeframes used in 
the different datasets contain up to 100 different codes (see the third column 
of Table 1), it would have been too cumbersome to report results for each 
individual code . As a result, for each dataset we have computed the average 
performance of the method across all the codes in the respective codeframe, 
and we have then computed the average performance of the method across 
the 15 datasets . So, each curve is the result of testing a ranking method 
individually on a total of 594 codes .12 Let us discuss these ranking methods .

The black curve (marked ‘Random’) represents the expected ER(x) values 
of the ‘random ranker’, i .e . of an algorithm that presents the verbatims 

11 Since some of these datasets are fairly small (e .g . about 200 verbatims), it might be legitimate to wonder 
how large a dataset needs to be in order for the conclusions drawn from an experiment to be reliable . We 
do not address this point extensively since it would be beyond the scope of this paper . Suffice it to say that 
what constitutes a ‘statistically representative sample’ of the set of verbatims that will be encountered in one’s 
operational environment is hard to characterise in a few words, and is the main subject of the theory of sampling 
(see e .g . Cochran 1977) . For our needs we may simply stick to the (simplistic and intuitive) rule of thumb that 
(1) the bigger the test set, the more reliable the results we obtain on it are going to be, provided that (2) the test set 
is an ‘as-random-as-possible’ sample of the set of items that need to be coded .
12 Unfortunately we are not allowed to display verbatim examples of the actual data we have used, due to the 
fact that, for all of the 15 datasets, we have obtained permission from the owners: (1) to use the data set for 
experimentation purposes and (2) to report aggregate numerical performance data in publications, but not (3) to 
display any actual verbatim in publications .
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in random order for the human coder to inspect . The curve is a perfect 
diagonal line, and shows that, e .g ., by inspecting 20% of the verbatims 
the human coder may expect to reduce the error present in the dataset by 
exactly 20% . This is indeed what might be expected – we cannot expect 
better-than-random performance if we act randomly .

The dark tint curve (marked ‘U-Theoretic’) represents our method 
as discussed earlier . We can see that the improvement in performance 
with respect to the black curve is no less than dramatic; for instance, by 
inspecting 20% of the verbatims, the human coder obtains a reduction 
in overall error of 60%, instead of 20% as obtained with the random 
ranker . This clearly indicates that supporting the work of human coders via 
appropriate ranking methods is of fundamental importance for maximising 
the cost-effectiveness of their work.

The light tint curve (marked ‘Baseline’) represents a variant of our 
method that, instead of using utility theory, uses probability theory alone 
– that is, this curve was obtained by setting the G(αj,fp) and G(αj,fn) 
values of Equations 3 and 4 to 1, and keeping them at this value for the 
entire process . In other words, this method takes into account only the 
probability of misclassification of the verbatim, and does not take into 
account the fact that correcting a false positive has a different impact on F1 
than correcting a false negative . We can observe that this method obtains a 
substantially inferior performance than the method based on utility theory, 
which confirms the quality of the intuitions underlying the latter .

The tinted dotted curve (marked ‘Oracle1’) actually represents an 
‘idealised’ (rather than a ‘real’) ranking method, since it represents how 
our utility-theoretic method would behave if we could perfectly guess the 
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Figure 5  Five different ranking methods at work on our 15 datasets
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actual values of TP, FP, FN, from which the gains of Equations 3 and 4 
are computed . As we noted earlier, since at the time of computing the 
rankings we do not know these values, we need to estimate them via 10-fold 
cross-validation . We obtained the results represented by the Oracle1 curve 
by ‘peeking’ at the real values of TP, FP, FN, and feeding them to our 
utility-theoretic method . The reason why we engaged in this seemingly futile 
exercise was precisely to know how much we lose because of our (inherent) 
inability to perfectly estimate the actual values of TP, FP, FN . The answer 
is that we do lose something but this loss is not dramatic, as can be seen 
from the difference between the tinted dotted and the dark tint curves . This 
suggests that the estimation method we have used is reasonable .

The black dotted curve (marked ‘Oracle2’) represents an even more 
idealised method, since it represents how our utility-theoretic method 
would behave if we could perfectly guess whether a verbatim has been 
coded correctly or not . That is, while Oracle1 has no need to estimate TP, 
FP, FN, since it ‘knows’ their true values, Oracle2 has no need to estimate 
the probabilities of misclassification described above, in the section titled 
‘Probabilities of occurrence’, since for each verbatim it ‘knows’ whether 
the verbatim has been miscoded or not .13 Again, the reason we engaged 
in this exercise was precisely to know how much we lose by our inability 
to precisely know whether the verbatim has been miscoded or not . The 
answer is that we lose a lot, as can be seen from the large distance between 
the black dotted and the dark tint curve . However, this is somehow 
inherent, since if we had a way to precisely know whether a given verbatim 
has been miscoded, we would have a way to correct its code assignment 
with no human intervention, and we would have no need of engaging 
human coders in an inspection task . The only way we can hope to partially 
close the gap between the black dotted and the dark tint line is by devising 
automatic coding systems with better ‘introspective capabilities’ (i .e . such 
that the confidence scores they return are more reliable than the ones we 
have used as input), and by devising better probability calibration methods .

ENER(y)

While ER(x) curves provide a nice graphical way of understanding the 
performance of a given ranking method, it may also be useful to have 
a measure that summarises this performance in a single number . One 

13 Note that Oracle2 a fortiori also knows the actual values of TP, FP, FN, so it is strictly a more idealised method 
than Oracle1 . Actually, it can be proven that Oracle2 is the best possible ranking method, i .e . it is an absolute 
upper bound that no other ranking method, real or idealised, can possibly outperform .



Optimising human inspection work in automated verbatim coding

506

obvious candidate might be the area under the curve that represents 
the method . However, one problem with this notion is that a very large 
portion of this area (namely, the portion below the black curve) represents 
an improvement in accuracy that is due to chance (since the black curve 
represents the expected performance of the random ranker); this large 
area tends to dwarf any difference between curves representing genuinely 
engineered methods (e .g . baseline and U-theoretic) . A second problem 
is that this notion does not take into account the fact that lower values 
of x (e .g . 0 .20) are more important than higher ones (e .g . 0 .80), since 
human coders are more likely to inspect the top-ranked verbatims than the 
bottom-ranked ones; so, an improvement in the top 20% portion of the 
graph is more important than an improvement in the bottom 20% .

In Berardi et al . (2012), we introduce a measure called ENER(y) 
(standing for expected normalised error reduction) . ENER(y) is essentially 
the area between the curve representing the method and the ‘Random’ 
curve, aside from the fact that it pays more importance to small values 
of x than to high ones . Exactly how much more importance it pays to 
the former than to the latter is determined by the y parameter, which 
indicates the expected value of the fraction of the set D that the coder 
is going to inspect . For example, y = 0 .05 represents the scenario in 
which coders tend to inspect very small portions of the list, while y = 
0 .20 envisages coders with higher perseverance . The smaller the value of 
y, the less the high values of x weigh in the computation of ENER . As 
usual, the interested reader should consult Berardi et al . (2012) for the 
mathematical details .

Table 2 lists the ENER(y) values obtained by the methods we have 
tested, for three important values of y, i .e . 0 .05, 0 .10, 0 .20 . (As mentioned 
above, high values of y represent unlikely scenarios .) The ENER(y) results 
reported in the table witness the quality of the intuitions that underlie our 
utility-theoretic method, which is seen to substantially outperform the 
probability-theoretic baseline for all chosen values of y .

Discussion

The law of diminishing returns

All of the curves (aside from the one representing the ‘Random’ method) in 
Figure 5 are fairly steep at the very beginning (i .e . for very low inspection 
percentages) and are decreasingly steep as these percentages increase, 
flattening out as they reach inspection depth values close to 1 .
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One practical effect of this is that the methods represented by these 
curves are characterised by a sort of ‘law of diminishing returns’, which 
essentially says that the very first phases of annotation work are extremely 
cost-effective, the subsequent ones are ‘just’ cost-effective, and the ones 
after them are less cost-effective . For instance, with reference to the 
example reported in Section 2, if the annotator’s target is to move up from 
the initial F1 = 0 .533 value to a value of F1 = 0 .800 (a 50% increase in 
F1) she needs to scan only 25% of the ranked list, but if she instead wants 
to go up to 0 .850 (a 60% increase in F1) she needs to scan 40% of the 
list . So, requiring just (0 .850/0 .800 =) 6% more accuracy requires (40/25 
=) 60% more annotation effort . Of course the example given above is 
artificial; however, it is realistic enough to illustrate qualitatively a ‘law 
of diminishing returns’ that, as evident from the curves of Figure 5, also 
holds in practice . Note that it is indeed a goal of a good ranking algorithm 
for such a law to be in place; to witness, the ‘Random’ ranking algorithm 
implements a situation of constant returns, and this is undesirable .

Easier datasets and harder datasets

As discussed above, the plots of Figure 5 result from averaging across the 15 
different datasets of Table 1 . However, it is apparent from the last column of 
Table 1 that the LL-A to LL-L and ANES L/D datasets appear ‘easier’ (since 
they give rise to F1 values between 0 .73 and 0 .98), while the Egg datasets 
appear ‘harder’ (with values of F1 between 0 .52 and 0 .61) . We might wonder 
what kind of impact these two groups of datasets have on the collective 
results of Figure 5; in particular, we might wonder whether the datasets 
characterised by higher F1 are also characterised by higher ER(x) values . To 
investigate this, in Figures 6a and 6b we have plotted the results of the same 

Table 2  ENER(y) results as a function of the expected fraction of the ranked list that gets 
inspected

Method ENER(0.05) ENER(0.10) ENER(0.20)
Random 0.000 0.000 0.000
Baseline 0.109 0.182 0.240
Utility-theoretic 0.165 (+51.3%) 0.234 (+28.5%) 0.286 (+19.1%)
Oracle1 0.196 0.270 0.320
Oracle2 0.344 0.437 0.483

Notes: Improvements indicated for the utility-theoretic method are relative improvements with respect to 
the baseline; Oracle2 represents the theoretical upper bound for the performance of any ranking method
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five methods of Figure 5, separately averaged across the 11 ‘easier’ datasets 
(Figure 6a) and across the four ‘harder’ ones (Figure 6b) .

Two insights can be obtained by looking at these two figures:

1 . all the methods (aside from the ‘Random’ one) perform better on 
the 11 datasets characterised by higher F1 than on the four datasets 
characterised by lower F1, as witnessed by the fact that the former 
curves are markedly more convex than the latter

2 . while the utility-theoretic method outperforms the baseline (probabilistic) 
method in both cases, the difference between the two is higher for the 
11 datasets characterised by higher F1 than for the four other ones .

The likely reason for the first fact is that, when a dataset is easy to classify 
(i .e . it gives rise to high F1), the confidence scores that the classifier 
outputs are more reliable, i .e . they tend to correlate better with the true 
code assignments; and reliable confidence scores bring about speedier 
improvements, since the misclassified examples tend to be concentrated 
towards the top of the ranking more densely than they would if the 
confidence scores were unreliable .

The likely reason for the second fact is not that the latter four datasets 
are easier, but that the average imbalance between positive and negative 
examples (i .e . the ratio between the value in the AVC column and the 
value in the #V column of Table 1) happens to be smaller for these four 
datasets than for the other 11 datasets; a smaller imbalance means that the 
difference in gain between correcting a false positive and correcting a false 
negative is smaller, which makes the utility-theoretic method more similar 
to the baseline (probabilistic) method .

On the practical value of utility-theoretic ranking

It is worthwhile to add a couple of observations on aspects of this method 
related to its practical use .

A first observation is that this method lends itself to having more 
than one human coder work in parallel on the same inspection task . For 
instance, if two human coders work in parallel, coder C′ may be asked to 
inspect the verbatims at the odd-numbered positions in the ranking while 
coder C″ may be asked to inspect the ones at the even-numbered positions . 
In a similar vein, any number of coders may be put to work in parallel on 
the same task and still achieve the same cost-effectiveness guaranteed by 
the single-coder scenario .
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A second observation is that this method is of practical value also because 
it allows the human coder to have an estimate, at any stage of the inspection 
process, of what level of accuracy has been attained so far . This is obtained by:

•	 estimating the contingency table at the beginning of the process 
(e .g . after the verbatims have been automatically coded and before 
the inspection process begins) via 10-fold cross-validation; from the 
contingency table one can compute F1, which returns an estimate of 
the accuracy obtained by the automated classifier

•	 updating the contingency table after each correction is made; again, from 
the contingency table one can compute an updated value of F1, which 
is an estimate of the accuracy deriving from the combined action of the 
automated classifier and the inspection activity of the human coder .

The human coder can thus make an informed decision on when to stop 
inspecting, e .g . she may decide to stop when the estimate of the accuracy 
obtained so far coincides or exceeds the accuracy level that was requested 
by the customer .

Concluding remarks

In more and more application contexts that require verbatim coding, the 
use of automated tools is a necessity, due either to the sheer amount of 
data that requires coding, or to strict time constraints that may be imposed 
on the task, or to issues of cost . However, in some of these scenarios the 
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customer may insist that coding is to be performed according to a certain 
level of accuracy, a level that for some datasets may not be achievable 
by current automated coding technology . In these cases, the only way to 
achieve the goal may consist in coding the data by machine and then having 
one or more human coders review some of the verbatims, with the goal of 
performing enough corrections so as to bring accuracy up to the required 
level . The method we have presented in this paper explicitly attempts 
to maximise the cost-effectiveness of the human coders’ review work by 
presenting the verbatims as a ranked list, with the intended meaning that 
the effort will be minimised if the coder inspects the verbatims in the 
provided order .

What are the takeaway messages that derive from this study? The first 
important one is that the order in which the verbatims are inspected 
by the human coder is of paramount importance, as witnessed by the 
more-than-solid improvements obtained, on 15 survey coding datasets, 
by two genuinely engineered ranking methods (indicated as ‘baseline’ and 
‘utility-theoretic’, above) with respect to the ‘Random’ method (which 
represents a coder that inspects verbatims by picking them in random order) .

The second important message is that we should be very serious about the 
mathematical measure we use for evaluating the accuracy of our verbatim 
coding systems . A first, fundamental reason (that goes beyond the specific 
task and methods discussed in this paper) is that the evaluation measure 
must reflect the specific needs of the application . For instance, if the 
application is such that the ability to avoid, say, false positives (‘precision’) 
is more important than the ability to avoid false negatives (‘recall’), then a 
measure that reflects this should be chosen .14 A second reason is that our 
method tailors the rankings it generates to the chosen accuracy measure 
(whatever this may be), since the gains of Equations 3 and 4 are defined in 
terms of it and are thus optimised for it . Altogether, these two facts point to 
the importance of developing a culture of evaluation for verbatim coding 
endeavours, be they the result of automated tools or not .

As a final (and somehow peripheral) note to the reader, we recall from note 
7 that the goal of this paper is to at least convey the gist of a subject matter 
that we elsewhere cover in much greater mathematical detail . We are indeed 
conscious that the technical material presented here is somehow outside 
the tradition of the market research literature, and may appear challenging . 

14 F1 is an instance of a more general class of evaluation functions called Fβ, where β ∈ [0,+∞) is a parameter 
that sets the relative importance of precision and recall (see Sebastiani 2002, p . 36) . Values of β smaller than 1 
emphasise precision at the expense of recall, values higher than 1 emphasise recall at the detriment of precision, 
while β = 1 enforces equal attention to precision and recall .
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However, quite aside from the specific topics dealt with in this paper, we 
think this represents an opportunity to reflect, given the growing importance 
that text mining/text analytics/sentiment analysis have in market research, 
whether market research scholars and practitioners should or should not 
attempt to understand what lies beneath the surface of the text analysis tools 
that are being proposed to them by text analysis companies . Although this 
may require market researchers to upgrade their mathematical toolbox a bit, 
we think this should be the case, lest an entire discipline is taken hostage by 
vendors wanting to hide more than they want to clarify .
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